ffmddb Documentation
Release pre-release

Madison Scott-Clary

February 08, 2017

Contents:

1 Using ffmddb 3
1.1 Theffmddbshell e e e 3
1.2 Theffmddb API e 3
2 ffmddb Configuration 5
3 The ffmddb Database 7
3.1 Documents and IndiCESt e e e e e e e e e e e e e e 7
3.2 Fileformat e e e e e e 7
4 ffmddb 9
4.1 ffmddb package 9
5 ffmddb Use Case Scenario 13
Python Module Index 15

ffmddb Documentation, Release pre-release

A flat-file-with-metadata database. This is a reference implementation for a simple document database idea based on
flat-files, each of which contains at least one field (a large text blob, the document field) and potentially many other
fields formed of structured data contained in a metadata blob within the file.

In short, it turns files written in a Jekyll fashion into objects in a database. The ‘post content’ turns into the document
field, and the metadata blob turns into other fields. Indices are built and querying becomes possible within the indices
(full document querying should rely on something like elasticsearch). The same data and relations are represented, but
in a format easily edited in any text editor, easily readible or served from something like Jekyll, and easily stored in a
VCS repo. The goal is not speed, but flexibility for manually interfacing with smaller datasets.

Contents: 1

ffmddb Documentation, Release pre-release

2 Contents:

CHAPTER 1

Using ffmddb

1.1 The ffmddb shell

1.2 The ffmddb API

ffmddb Documentation, Release pre-release

4 Chapter 1. Using ffmddb

CHAPTER 2

ffmddb Configuration

f fmddb relies on a single configuration file to figure out how to interact with the database. This file contains a YAML
blob, which describes a few things about the structure of the data. It informs the database of where

Configuration file (.ffmddbrc) example:

my_log_files:
version: 1
collections:
- name: logs
path: ./logs
— name: participants
path: ./participants

indices:
- name: log_tag
from: ['logs', 'metadata:tag']
- name: participants_logs
from: ['participants', 'name:']
to: ['logs', 'metadata:participants']
fence: ['<!-——ffmddb', '-->"]
Config Default Explanation
entry
<Root level | N/A The name of the database.
key>
collectiondN/A A list of YAML objects. Each object should containa name and a path entry. The

name should contain letters, numbers, and underscores and start with a letter. The
path should be relative to the configuration file. Can be empty.

indices N/A A list of YAML objects. Each object should contain a name, a from field, and an
optional to field. The name should contain letters, numbers, and underscores and
start with a letter. The from and to fields should contain an array with the first item
being the name of a collection and the second being a query for selecting one field.
Can be empty, cannot contain data if collections is empty.

fence ["———+", | The fence that delineates the metadata field from the document field. Should be a
r———q7] two-item array, with the two items being strings containing the open fence and the
close fence. The strings will be interpreted as regular expressions (the default being
an example, specifying both fences as three or more hyphens), so be careful to
escape where needed. fences occur on a line by themselves. Multiple metadata
blocks may occur in a file; they will be merged before parsing.

index_path . ffmddb_ild¥he folder relative to the configuration file which contains the indices.
multiple_mdiaksdata Whether or not to collect metadata from multiple fenced blocks.

some more

ffmddb Documentation, Release pre-release

6 Chapter 2. ffmddb Configuration

CHAPTER 3

The ffmddb Database

3.1 Documents and indices

3.2 File format

Files which will be documents in the database should be textual. They can be of any format, so long as, when read,
the fenced metadata may be found. For example, you could have a markdown file with a metadata block:

layout: post
title: My great document
tags:

- foxes

- cats

- dogs

Wow, foxes and dogs and cats are all *really greatx!

In this instance, you can see that the file itself is an actual Jekyll file.

Fences do not need to be Jekyll style (three or more hyphens), but may be anything, so long as they’re specified in
the configuration file. For example, you can specify the fence to be an XML comment if you’re storing XML-based
documents.

In the configuration file:

mydb:

fence: ['<!-——ffmddb', '-->"]

And in the document:

<mydoc>
<!-—ffmddb
foo: bar
baz: qux
-——>

</mydoc>

ffmddb Documentation, Release pre-release

8 Chapter 3. The ffmddb Database

CHAPTER 4

ffimddb

4.1 ffmddb package

4.1.1 Subpackages
ffmddb.core package

Subpackages

ffmddb.core.models package Models, to ffmddb are any thing that maps from a string or file to a python object.
For files, this includes:

* a document, which maps to one of the files ffmddb knows about

* afolder acting as a collect ion of documents

* an index file
For strings, this includes:

* aconfiguration YAML blob (which may come from a file)

* ajson guery against the database (which may be a python dict)

* a field spec
Submodules

ffmddb.core.models.config module
class ffmddb.core.models.config.Configuration (name, collections, indices, options)
Stores database configuration read from a file or the user.

exception MalformedConfiguration
Bases: exceptions.Exception

classmethod Configuration. from_object (config_obj)
Parses a configuration object (as generated by loading a yaml configuration file) into an internal object
used by the database

Configuration.marshal ()
marshals the configuration object back to YAML

ffmddb Documentation, Release pre-release

ffmddb.core.models.document module
class ffmddb.core.models.document .Collection (name, path)
Stores a reference to a collection of documents

marshal ()
class ffmddb.core.models.document .CollectionField (collection, field)
Stores an abstract reference to a field which should exist on most/all documents in a collection, used for indexing

marshal ()

class ffmddb.core.models.document .Document (db, collection, name, document._field=None,

) metadata=None)
Stores a reference to a single document

marshal ()

ffmddb.core.models.field module
class ffmddb.core.models.field.Field (field_spec)

exception MalformedSpec
Bases: exceptions.Exception

Field.marshal ()
classmethod Field.parse_spec (spec)

Field. run (document)

ffmddb.core.models.index module
class ffmddb.core.models.index.CoreIndex
Bases: ffmddb.core.models.index.Index

Represents the core index, which tracks documents and metadata field names, as well as indices
class ffmddb.core.models.index.CrossCollectionIndex (name, from_collection_field,

to_collection_field)
Bases: ffmddb.core.models.index.Index

Represents an index on one field common to a collection which maps to a field on another (or the same) collec-
tion

marshal ()

class ffmddb.core.models.index.Index
Provides an interface of common methods for collection types

read ()
write ()

class ffmddb.core.models.index.SingleCollectionIndex (name, collection_field)
Bases: ffmddb.core.models.index.Index

Represents an index on one field common to a collection

marshal ()

10 Chapter 4. ffmddb

ffmddb Documentation, Release pre-release

ffmddb.core.models.query module
class ffmddb.core.models.query.Filter (filter_obj)
Stores a single filter for comparing a field to a value

OPERATORS = {‘le’: <function <lambda> at 0x7fb3eb375140>, ‘It’: <function <lambda> at 0x7fb3eb4825f0>, ‘gt’: <funct

classmethod is_filter (0bj)
duck-types a dict to see if it looks like a filter object

run (document)
runs the test against the document, comparing the metadata field specified by the filter’s field against the
provided value using the provided operation
class ffmddb.core.models.query.FilterGroup (conjunction, filter_list)
Stores a list of filter objects joined by a conjunction

CONJUNCTIONS = {‘and’: <function <lambda> at 0x7fb3eb375410>, ‘not’: <function <lambda> at 0x7fb3eb375500>, ‘or

classmethod is_filter group (0bj)
duck-types a dict to see if it looks like a filter-group

run (document)
runs each specified filter in the group and reduces the results to a single value with the provided conjunction

class ffmddb.core.models.query.Query (query_obj)
Stores an arbitrarily complex query

exception MalformedQuery
Bases: exceptions.Exception

Query.run (document)
runs the core filter group which contains all filters and groups in the query

Submodules

ffmddb.core.database module

class ffmddb.core.database.Database (config_obj, config_file=None)
Stores a reference to a database (a configuration file and the files it specifies), providing methods to interact with
it

close ()

create_collection (name, path, mkdir_if_needed=True, keep_file=True)
create_document (document)

delete_collection (name, cascade=False)

delete_ document (document)

classmethod from_file (config_file)

classmethod from_string (config_str, config_file=None)
get_collection (name)

get_documents (collection_name, query)

update_document (document, field, value)

4.1. ffmddb package 11

ffmddb Documentation, Release pre-release

4.1.2 Submodules

ffmddb.client module

ffmddb.client.run ()

ffmddb.server module

ffmddb.server.run()

12

Chapter 4. ffimddb

CHAPTER 5

ffmddb Use Case Scenario

Jfmddb was born from the idea that the best tool for editing a textfile is a text editor, and yet even text files benefit from
managed metadata and relations between objects, as shown by a case study:

I’ve been on the ‘net for well over twenty years now, and over that period of time, I’'ve amassed hundreds
of log files. Some are notes, some are important conversations that led to relationship, some are inane
conversations with individuals who have since passed away.

In that time, I’ve run through several different organizational schemes, databases, and projects to manage
these files. I wanted the organizational benefits of a relational database, the freedom of a document
database, and the flexibility of editing the files by hand in whatever editor I choose. Finally, I wanted the
ability to keep the files in a repository.

For the above problem space, the relation solution would be:
* A table of participants (name, about)
* A table of logs (name, text, date)
* A mapping table (log, participant)
In ffmddb, that maps to:
* A folder of participant files, text files with any document data, named after the participant

* A folder of log files, text files with any document data, and metadata containing a list of participants and the
date of the log

* An index file containing mapping between logs by participant for faster queries

The same data and relations are represented, but in a format easily edited in any text editor, easily readible or served
from something like Jekyll, and easily stored in a VCS repo. The goal is not speed, but flexibility for manually
interfacing with smaller datasets.

13

ffmddb Documentation, Release pre-release

14 Chapter 5. ffmddb Use Case Scenario

Python Module Index

f

ffmddb, 9
client, 12
core, 9

database, 11

ffmddb.
ffmddb.
ffmddb.
ffmddb.
ffmddb.
ffmddb.
ffmddb.
ffmddb.
ffmddb.
ffmddb.

core.
core.
core.
core.
core.
core
core.

models
models
models
models

.models

models

server, 12

,9

.config,9
.document, 10
.field, 10
.index, 10
.query, 11

15

ffmddb Documentation, Release pre-release

16 Python Module Index

Index

C

close() (ffmddb.core.database.Database method), 11

Collection (class in ffmddb.core.models.document), 10

CollectionField (class in ffmddb.core.models.document),
10

Configuration (class in ffmddb.core.models.config), 9

Configuration.MalformedConfiguration, 9

CONJUNCTIONS (ffmddb.core.models.query.FilterGroup
attribute), 11

Corelndex (class in ffmddb.core.models.index), 10

create_collection() (ffmddb.core.database.Database

method), 11

create_document() (ffmddb.core.database.Database
method), 11

CrossCollectionIndex (class in

ffmddb.core.models.index), 10

D

Database (class in ffmddb.core.database), 11
delete_collection() (ffmddb.core.database.Database
method), 11
delete_document()
method), 11
Document (class in ffmddb.core.models.document), 10

F

ffmddb (module), 9

ffmddb.client (module), 12

ffmddb.core (module), 9
ffmddb.core.database (module), 11
ffmddb.core.models (module), 9
ffmddb.core.models.config (module), 9
ffmddb.core.models.document (module), 10
ffmddb.core.models.field (module), 10
ffmddb.core.models.index (module), 10
ffmddb.core.models.query (module), 11
ffmddb.server (module), 12

Field (class in ffmddb.core.models.field), 10
Field.MalformedSpec, 10

Filter (class in ffmddb.core.models.query), 11

(ffmddb.core.database.Database

FilterGroup (class in ffmddb.core.models.query), 11

from_file() (ffmddb.core.database.Database
method), 11

from_object() (ffmddb.core.models.config.Configuration
class method), 9

from_string() (ffmddb.core.database.Database
method), 11

class

class

G

get_collection()
method), 11

get_documents()
method), 11

(ffmddb.core.database.Database

(ffmddb.core.database.Database

Index (class in ffmddb.core.models.index), 10

is_filter() (ffmddb.core.models.query.Filter
method), 11

is_filter_group() (ffmddb.core.models.query.FilterGroup
class method), 11

class

M

marshal() (ffmddb.core.models.config.Configuration
method), 9
(ffmddb.core.models.document.Collection
method), 10
marshal() (ffmddb.core.models.document.CollectionField
method), 10
(ffmddb.core.models.document. Document
method), 10
marshal() (ffmddb.core.models.field.Field method), 10
marshal() (ffmddb.core.models.index.CrossCollectionIndex
method), 10
marshal() (ffmddb.core.models.index.SingleCollectionIndex
method), 10

marshal()

marshal()

O

OPERATORS (ffmddb.core.models.query.Filter
tribute), 11

at-

17

ffmddb Documentation, Release pre-release

P
parse_spec() (ffmddb.core.models.field.Field class
method), 10

Query (class in ffmddb.core.models.query), 11
Query.MalformedQuery, 11

R

read() (ffmddb.core.models.index.Index method), 10
run() (ffmddb.core.models.field.Field method), 10

run() (ffmddb.core.models.query.Filter method), 11

run() (ffmddb.core.models.query.FilterGroup method), 11
run() (ffmddb.core.models.query.Query method), 11
run() (in module ffmddb.client), 12

run() (in module ffmddb.server), 12

S

SingleCollectionIndex (class in
ffmddb.core.models.index), 10

U

update_document() (ffmddb.core.database.Database
method), 11

W

write() (ffmddb.core.models.index.Index method), 10

18

Index

	Using ffmddb
	The ffmddb shell
	The ffmddb API

	ffmddb Configuration
	The ffmddb Database
	Documents and indices
	File format

	ffmddb
	ffmddb package

	ffmddb Use Case Scenario
	Python Module Index

